Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Agric Food Chem ; 72(17): 9703-9716, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38567751

RESUMO

Cyanidin-3-O-glucoside (C3G) is classified as an anthocyanin (ACN) and is recognized for its remarkable antioxidant properties. Yet, the inadequate physicochemical stability of C3G restricts its potential for various biological applications. Thus, in this study, carboxymethyl chitosan (CMC)-coated nanonutriosomes (NS) were synthesized as a novel carrier for encapsulating C3G (CMC-C3G-NS) to improve C3G stability. CMC-C3G-NS exhibited a diameter of less than 200 nm along with an encouraging encapsulation efficiency exceeding 90%. Notably, the formulated CMC-C3G-NS possessed better stability under various pH, ionic, and oxygen conditions, improved controlled release properties, and higher hepatocellular uptake than uncoated particles (C3G-NS), indicating a longer retention time of C3G in a physiological environment. Of utmost significance, CMC-C3G-NS demonstrated superior alleviating effects against palmitic acid (PA)-induced oxidative hepatic damage compared to C3G-NS. Our study provided promising nanocarriers with the potential to deliver hydrophilic ACNs and controlled release properties for PA-induced hepatotoxicity alleviation.


Assuntos
Antocianinas , Quitosana , Quitosana/análogos & derivados , Hepatócitos , Nanopartículas , Ácido Palmítico , Quitosana/química , Antocianinas/química , Antocianinas/administração & dosagem , Antocianinas/farmacologia , Ácido Palmítico/química , Hepatócitos/efeitos dos fármacos , Hepatócitos/metabolismo , Humanos , Nanopartículas/química , Portadores de Fármacos/química , Estresse Oxidativo/efeitos dos fármacos , Animais , Células Hep G2
2.
J Zhejiang Univ Sci B ; 24(7): 574-586, 2023 Jul 15.
Artigo em Inglês, Chinês | MEDLINE | ID: mdl-37455135

RESUMO

Wax apple (Syzygium samarangense) has received growing research interest for its high nutritional and medicinal value due to its constituents such as polysaccharide, organic acids, flavonoids, minerals, and other substances. In this study, wax apple polysaccharide (WAP) was isolated from this plant and its protective effect against ethyl carbamate (EC)|-induced oxidative damage was evaluated in human hepatocytes (L02 cells). Firstly, a series of analyses such as high-performance liquid chromatography (HPLC), high-performance gel permeation chromatography (HPGPC), Fourier transform infrared spectroscopy (FT-IR), gas chromatography/mass spectrometry (GC/MS), and 1H and 13C nuclear magnetic resonance (NMR) were conducted to identify the structure of WAP. Thereafter, in vitro cell experiments were performed to verify the protective effects of WAP against EC-induced cytotoxicity, genotoxicity, and oxidative damage in L02 cells. Our results revealed that WAP is composed of mannose, rhamnose, glucuronic acid, galacturonic acid, glucose, galactose, arabinose, and fucose in a molar ratio of 2.20:|3.94:|4.45:|8.56:|8.86:|30.82:|39.78:|1.48. Using a combination of methylation and NMR spectroscopic analysis, the primary structure of WAP was identified as Araf-(1→, Glcp-(1→, →2)|-Araf-(1→, →3)|-Galp-(1→, →3)|-Araf-|(1→, and →6)|-Galp-|(1→. Cell experiments indicated that WAP exhibited significant protective effects on EC-treated L02 cells via suppressing cytotoxicity and genotoxicity, reducing reactive oxygen species (ROS) and O2•- formation, as well as improving mitochondrial membrane potential (MMP) and glutathione (GSH). In a nutshell, WAP has the potential as an important therapeutic agent or supplement for hepatic oxidative damage. Meanwhile, further studies are needed to prove the above effects in vivo at the biological and clinical levels.


Assuntos
Syzygium , Humanos , Syzygium/química , Uretana/farmacologia , Espectroscopia de Infravermelho com Transformada de Fourier , Estresse Oxidativo , Glutationa/farmacologia , Hepatócitos , Polissacarídeos/farmacologia
3.
Crit Rev Food Sci Nutr ; 63(19): 3362-3385, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-34661483

RESUMO

Anthocyanins (ACNs) are notable hydrophilic compounds that belong to the flavonoid family, which are available in plants. They have excellent antioxidants, anti-obesity, anti-diabetic, anti-inflammatory, anticancer activity, and so on. Furthermore, ACNs can be used as a natural dye in the food industry (food colorant). On the other hand, the stability of ACNs can be affected by processing and storage conditions, for example, pH, temperature, light, oxygen, enzymes, and so on. These factors further reduce the bioavailability (BA) and biological efficacy of ACNs, as well as limit ACNs application in both food and pharmaceutics field. The stability and BA of ACNs can be improved via loading them in encapsulation systems including nanoemulsions, liposomes, niosomes, biopolymer-based nanoparticles, nanogel, complex coacervates, and tocosomes. Among all systems, biopolymer-based nanoparticles, nanohydrogels, and complex coacervates are comparatively suitable for improving the stability and BA of ACNs. These three systems have excellent functional properties such as high encapsulation efficiency and well-stable against unfavorable conditions. Furthermore, these carrier systems can be used for coating of other encapsulation systems (such as liposome). Additionally, tocosomes are a new system that can be used for encapsulating ACNs. ACNs-loaded encapsulation systems can improve the stability and BA of ACNs. However, further studies regarding stability, BA, and in vivo work of ACNs-loaded micro/nano-encapsulation systems could shed a light to evaluate the therapeutic efficacy including physicochemical stability, target mechanisms, cellular internalization, and release kinetics.


Assuntos
Antocianinas , Nanopartículas , Antocianinas/química , Disponibilidade Biológica , Nanopartículas/química , Antioxidantes/química , Lipossomos/química
4.
Crit Rev Food Sci Nutr ; 63(29): 9731-9751, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-35522080

RESUMO

Curcumin (CUR) is a natural hydrophobic compound, which is available in turmeric rhizome. It has several bioactivities including antioxidant, anti-obesity, anti-diabetic, cardioprotective, anti-inflammatory, antimicrobial, anticancer, and other activities. Despite its medical and biological benefits, it is using in limitations because of its hydrophobicity and sensitivity. These unfavorable conditions further reduced the bioavailability (BA) and biological efficacy of CUR. This review summarizes the stability and BA of free- and encapsulated-CUR, as well as comprehensively discusses the potential biological activity of CUR-loaded various micro-/nano-encapsulation systems. The stability and BA of CUR can be improved via loading in different encapsulation systems, including nanoemulsions, liposomes, niosomes, biopolymer-based nanoparticles, nano-hydrogel, and others. Biopolymer-based nanoparticles (especially poly lactic-co-glycolic acid (PLGA), zein, and chitosan) and nano-gels are the best carriers for encapsulating and delivering CUR. Both delivery systems are suitable because of their excellent functional properties such as high encapsulation efficiency, well-stability against unfavorable conditions, and can be coated using other encapsulation systems. Based on available evidences, encapsulated-CUR exerted greater biological activities especially anticancer (breast cancer), antioxidant, antidiabetic, and neuroprotective effects.


Assuntos
Curcumina , Nanopartículas , Humanos , Curcumina/farmacologia , Copolímero de Ácido Poliláctico e Ácido Poliglicólico , Portadores de Fármacos/química , Antioxidantes/farmacologia , Nanopartículas/química , Lipossomos , Biopolímeros , Tamanho da Partícula
5.
Foods ; 11(6)2022 Mar 17.
Artigo em Inglês | MEDLINE | ID: mdl-35327278

RESUMO

This study examined the efficacy of curcumin (Cur) against lead (Pb)-induced oxidative damage, inflammation, and cholinergic dysfunction. Institute for Cancer Research (ICR) mice received Pb (II) acetate in drinking water (1%) with or without Cur via oral gavage. Blood and brain tissues were collected for investigation. Pb increased the inflammatory markers and oxidative parameters, which were ameliorated by Cur administration. Cur treatment also improved memory loss, learning deficit, and cholinergic dysfunction via elevating acetylcholinesterase (AChE) enzymatic activity and protein expression. In silico molecular docking supported the results; Cur had a potent binding affinity for AChE receptors, tumor necrosis factor-α (TNF-α), cyclooxygenase-2 (COX-2), phosphorylations of IκB kinase (IKK), extracellular signal-regulated kinase (ERK), c-Jun N-terminal kinase (JNK), and p38 mitogen-activated protein kinase (p38). According to the chemical absorption, distribution, metabolism, excretion, and toxicity (ADMET) profile, Cur could serve as a potential candidate for Pb detoxication substance via exerting antioxidant activity. Taken together, our results suggest that Cur is a natural compound that could be used for the treatment of neurodegenerative disorders via suppressing lead-induced neurotoxicity.

6.
Food Funct ; 13(3): 1579-1592, 2022 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-35073395

RESUMO

This study for the first time used Melastoma dodecandrum Lour fruit powder (MDLP) as a novel functional ingredient for improving the quality of stirred-type yogurt (STY). Physicochemical properties, polyphenol content, antioxidant activity, textural analysis, fat globules, microstructure, and sensorial properties of MDLP-fortified STY were evaluated during storage (at 4 °C). The results indicated that MDLP significantly (p < 0.05) improved the total phenolics, flavonoids, anthocyanins, and proanthocyanidins, as well as increased the antioxidant activity of fortified yogurts compared to an STY-control. Interstitially, MDLP altered the structure of STY, making it firmer and more cohesive, increased its viscosity index, and significantly reduced whey and fat globule release compared to the STY-control during cold storage. Among all MDLP concentrations, 1% MDLP-fortified STY showed the best results followed by 0.5%. This study concluded that MDLP can be used as a potential nutritious ingredient and as a natural stabilizer for yogurt and related products.


Assuntos
Antioxidantes/análise , Alimentos Fortificados/análise , Frutas , Melastomataceae , Iogurte/análise , Animais , Compostos de Bifenilo , Manipulação de Alimentos , Picratos , Reologia
7.
J Sci Food Agric ; 101(15): 6271-6280, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-33949697

RESUMO

BACKGROUND: Shiitake mushroom is one of the most popular delicious vegetables, although fresh shiitake mushroom has short shelf life as a result of biochemical degradation. Drying can prolong the shelf life of mushroom. Additionally, application of cold plasma pretreatments (CPT) before drying can preserve the product quality, processing costs and nutritional values. Therefore, we aimed to explore the effect of cold plasma pretreated hot-air drying at 50, 60 and 70 °C on the physicochemical characteristics, nutritional values and antioxidant activity of shiitake mushroom. RESULTS: Scanning electron microscopy micrographs showed that CPT induced the surface modification of fresh shiitake (such as cellular disarrangement, cellular shrinkages, disruption or break down of cell walls, and intracellular spaces and cavities) and facilitate the rapid drying than control samples. Furthermore, CPT improved the powder qualities (bulk density, water retention and swelling index) and preserved higher nutritional attributes (sugars, vitamins, phenolic acids contents and antioxidant activity) compared to the control groups. CONCLUSION: Conclusively, CPT could be a suitable alternative technique for improving drying characteristics and preserving nutritional attributes of agro-based products. © 2021 Society of Chemical Industry.


Assuntos
Antioxidantes/análise , Dessecação/métodos , Conservação de Alimentos/métodos , Gases em Plasma/farmacologia , Cogumelos Shiitake/química , Verduras/química , Dessecação/instrumentação , Conservação de Alimentos/instrumentação , Valor Nutritivo , Cogumelos Shiitake/efeitos dos fármacos , Verduras/efeitos dos fármacos
8.
Int J Biol Macromol ; 154: 380-389, 2020 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-32194101

RESUMO

Polysaccharides and fruit extracts are applied in dairy products to enhance their nutritional property, but the effects of such formulations on the functions and biological activities are yet to be explored. Therefore, this study was aimed at evaluating the effect of interactions among milk protein (beta-lactoglobulin; BLG), polysaccharides (pectin, P; chitosan, CH), and anthocyanin (pelargonidin-3-O-glucoside; P3G) in improving the bioavailability and biological activity of P3G. After gastrointestinal digestion (GID), the content of free P3G in different model solutions were as follows: P3G-alone (73.59 µg/mL), P3G-P (66.59 µg/mL), P3G-CH (36.72 µg/mL), P3G-BLG (64.92 µg/mL), P3G-P-BLG (64.92 µg/mL), and P3G-CH-BLG (39.61 µg/mL). Less amount of free P3G in model solutions indicated increased complex formation of P3G with protein and/or polysaccharides during GID. These complexes resulted in protection and progressive release of P3G in the gastrointestinal tract. Chitosan exhibited more protection to P3G compared with P and BLG. In addition, α-glucosidase inhibitory activity and ROS scavenging activities of conjugated-P3G samples were potentially augmented after GID. However, the presence of polysaccharides and protein in the model solutions did not show any negative effect on the biological activity of P3G. Thus, pure P3G can be used as a nutritional ingredient in dairy industries.


Assuntos
Antocianinas/farmacologia , Quitosana/química , Digestão/efeitos dos fármacos , Inibidores de Glicosídeo Hidrolases/farmacologia , Lactoglobulinas/química , Pectinas/química , Antocianinas/farmacocinética , Antioxidantes , Disponibilidade Biológica , Trato Gastrointestinal/metabolismo , Inibidores de Glicosídeo Hidrolases/farmacocinética , Células Hep G2 , Humanos , alfa-Glucosidases/metabolismo
9.
Saudi J Biol Sci ; 27(12): 3700-3710, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34466056

RESUMO

This research investigated the reno-protective effect of Thunbergia laurifolia Linn. (TL) in a lead-induced toxicity test through the modulation of cell signaling pathways. The study carried out to evaluate the effect of TL leaf extracts in Swiss Albino mice exposed to lead acetate (PbAc). Prior to in vivo study, a probable kidney-protective effect of the plant leaf extract was presumed through an activity-specific (PASS) molecular docking analysis. In animal model study, albino mice were divided in seven groups and co-treated with PbAc and TL (100, 200 mg/kgBW) or vitamin E (100 mg/kgBW) for 38 days, whereas the untreated control, TL control, and vehicle control groups received sodium acetate, PbAc, sodium acetate plus mineral oil, respectively. At the end of treatment, blood and kidney tissue were collected for investigating Pb concentration, estimating biochemical profile, evaluating oxidative stress and inflammatory parameters. The histopathological change of kidney along with apoptosis was assessed from kidney sections using H & E staining and TUNEL assay. Pb-exposed mice were found to be increased concentration of Pb in the blood and kidney sample, which further led to increased MDA levels in the plasma, blood, and tissue. Followed by kidney damage, increased expression of TNF-α, iNOS, and COX-2 in kidney tissues were noticed, which were related to elevated TNF-α in the systemic circulation of Pb-treated mice. Co-treatment with TL or vitamin E significantly reduced altered structure and apoptosis of kidney tissues. Downregulation of inflammatory markers especially TNF-α, iNOS, and COX-2 with simultaneous improvement of renal function through reduced plasma BUN and creatinine levels demonstrate that TL act as a potential dietary supplement to detoxify Pb in kidney showing an antioxidant and anti-inflammatory effect.

10.
J Food Sci ; 84(5): 1208-1215, 2019 May.
Artigo em Inglês | MEDLINE | ID: mdl-31012974

RESUMO

Type II diabetes (T2D) nephropathy, a major cause of end-stage kidney disease, progresses and develops from oxidative stress. Natural polyphenols can protect the kidney from diabetic nephropathy exerting antioxidant activities. The present approach enumerates the reno-protective and anti-apoptotic effects of mangosteen vinegar rind (MVR, a phenolic aqueous extract) against high-fat diet (5 g/day up to five weeks)-/streptozotocin (single ip, dose 30 mg/kgBW)-induced T2D nephropathy of albino mice. In vitro total phenolic content, 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulphonic acid) (ABTS) activity, 2,2-diphenyl-1-picrylhydrazyl (DPPH) antioxidant capacity, and α-amylase inhibition activity as antidiabetic assay of MVR were performed. In vivo mice body weight, oral glucose, and maltose tolerance test, metabolic parameters (plasma glucose, insulin level, omeostasis model assessment-estimated insulin resistance), biochemical parameters (kidney hypertrophy, blood urea nitrogen, creatinine), oxidative stress parameters (malondialdehyde, superoxide dismutase, catalase) were estimated in an intervention study. Additionally, renal morphology and early apoptosis were observed following the H & E staining and TUNEL assay of the tissue frozen section. We found that the aqueous extract of MVR possesses potent in vitro antioxidative and antidiabetic activities. Animal intervention results showed that MVR 100, 200 mg/kgBW, and Glibenclamide 60 mg/kgBW treatments significantly improved (P < 0.05) the abovementioned parameters compared to the diabetic control group. Furthermore, treatments also significantly restored (P < 0.05) kidney histological alterations and reduced cellular apoptosis compared to the diabetic control group. These findings concluded that MVR treatments significantly modulated the glucose intolerance, metabolic alterations, and oxidative stress-induced pathological alterations and cellular apoptosis of diabetic kidney. PRACTICAL APPLICATION: Garcinia mangostana, a polyphenol rich natural product, is obtained from the tropical rain forest area of Southeast Asian countries and processes diverse biological activities including antioxidant, anti-proliferative, anti-inflammatory, anti-carcinogenic, and so on. This research first time focuses on the nephro-protective and anti-apoptotic effects of mangosteen vinegar rind (MVR) from the mangosteen fruit pericarp. Our study provides the efficient data to prove the beneficial effect of MVR as a dietary supplement for the prevention and management of diabetic nephropathy.


Assuntos
Ácido Acético/farmacologia , Diabetes Mellitus Experimental/prevenção & controle , Nefropatias Diabéticas/prevenção & controle , Dieta Hiperlipídica/efeitos adversos , Garcinia mangostana/química , Extratos Vegetais/farmacologia , Animais , Apoptose/efeitos dos fármacos , Camundongos , Estreptozocina/efeitos adversos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA